До 1980 года ни в одной стране мира не устанавились нормативы на содержание радона и его ДПР в помещениях. И только углубленные исследования, проведеные в последнее десятилетия, роказали, что радоновая проблема, включая вопросы нормирования и снижения доз облучения, имеет существенное значение. Соответствующие нормативы для существующих и проектируемых зданий, рекомендованные МКРЗ и принятие в различных странах, приведены в таблице №3.
Источники повышенных концентраций радона в помещениях.
Радон попадает в атмосферу помещений различными путями: а) проникает из недр Земли; б) выделяется из строительных материалов( цемент, щебень, кирпич, керамзит, и т.д.), из которых построено здание; в) привносится с водопроводной водой, бытовым газом и другими продуктами жизнеобеспечения.
Как я уже говорила радон хорошо растворяется в воде и поэтому он содержится во всех природных водах, причем в глубинах грунтовых водах его, как правило, заметно больше, чем в поверхностных водостоках и водоемах. Например, в подземных водах его концентрация может изменяться от 4 – 5 Бк\л до 3 – 4 МБк\л,то есть в миллион раз. В то же время в водах озер и рек концентация радона редко превышает 0,5 Бк\л, а в водах морей и океанов не более 0,05 Бк\л. Радон попадает из вод в атмосферу зданий при использовании заметных масс воды за счет процессов эксляции – дегазации с выносом радона из воздушных пузырьков, содержащихся в воде, в атмосферу. Наиболее интенсивно этот процесс происходит при разбрызгивании и испарении (кипении) воды.
Радон в зданиях.
К настоящему времени в различных странах накоплена достаточно обширная информация о содержании радона в жилых и служебных помещениях. Эти данные постоянно пополняются и уточняются, поэтому представления о средних концентрациях радона в зданиях и его ПДК претерпевают изменения. Уровни ПДК, принятые Национальными комитетами радиационной защиты различных стран, заметно отличаются, но находятся в пределах от 74 Бк\м3 (2* 10-10 Кюри / литр) до 150 Бк\м3 для новых строящихся зданий. С этой точки зрения интересны результаты обследования домов в различных странах. Таблица №4.
Как видно из данных таблицы №5, содержание свободного радона существенно зависит от всех указанных параметров горных пород и может изменяться в очень широких пределах. В приповерхностных условиях концентрация радона в грунтах заметно снижается по сравнению с табличными значениями за счет границы раздела земля – воздух и разубоживания почвенного воздуха атмосферным.
В процессах же тектонической деятельности, выветривания и других происходят изменения горных пород: повышается их пористость, образуется системы разнонаправленный трещин, полостей. Тектонические зоны приобретают хорошие коллекторские свойства, в них происходит накопление радона, повышается коэффициент эманирования.
Как результат – большая часть тектонических нарушений превращается в радоносные подводящие структуры. В случаях, когда над такими структурами распологаются построуки, вероятность накопления в них ураганно – высоких концентраций радона резко повышается.
В проблеме радона остается еще много нерешенных вопросов. С одной стороны они имеют чисто научный интерес, а с другой стороны, без их решения очень сложно проводить какие-либо практические работы, например, в рамках Федеральной программы «Радон».
Диаграмма №5.
|
| |||||||||||||
| |||||||||||||
| |||||||||||||
| |||||||||||||
|
Интересное по теме
Человек и биосфера Уже сотни людей побывали в космосе и через иллюминаторы космических летательных аппаратов видели внешний облик нашей планеты. Но еще в начале века В. И. Вернадский сумел взглянуть на Землю с еще более далекого расстояния и силой могучего в ...
Оценка эффективности благоустройства г. Тюмени В современном городе складывается специфическая и во многом неблагоприятная для жизнедеятельности человека экологическая обстановка. Ее отличительными особенностями являются повышенное содержание атмосферных загрязнений, более ре ...